I’m super excited to teach you the lewis structure of SF2 in just 6 simple steps.
Infact, I’ve also given the step-by-step images for drawing the lewis dot structure of SF2 molecule.
So, if you are ready to go with these 6 simple steps, then let’s dive right into it!
Lewis structure of SF2 contains two single bonds between the Sulfur (S) atom and each Fluorine (F) atom. The Sulfur atom (S) is at the center and it is surrounded by 2 Fluorine atoms (F). The Sulfur atom has 2 lone pairs and both the Fluorine atoms have 3 lone pairs.
Let’s draw and understand this lewis dot structure step by step.
(Note: Take a pen and paper with you and try to draw this lewis structure along with me. I am sure you will definitely learn how to draw lewis structure of SF2).
6 Steps to Draw the Lewis Structure of SF2
Step #1: Calculate the total number of valence electrons
Here, the given molecule is SF2 (sulfur difluoride). In order to draw the lewis structure of SF2, first of all you have to find the total number of valence electrons present in the SF2 molecule.
(Valence electrons are the number of electrons present in the outermost shell of an atom).
So, let’s calculate this first.
Calculation of valence electrons in SF2
- For Sulfur:
Sulfur is a group 16 element on the periodic table. [1]
Hence, the valence electrons present in sulfur is 6 (see below image).
- For Fluorine:
Fluorine is a group 17 element on the periodic table. [2]
Hence, the valence electrons present in fluorine is 7 (see below image).
Hence in a SF2 molecule,
Valence electrons given by Sulfur (S) atom = 6
Valence electrons given by each Fluorine (F) atom = 7
So, total number of Valence electrons in SF2 molecule = 6 + 7(2) = 20
Step #2: Select the center atom
While selecting the atom, always put the least electronegative atom at the center.
(Remember: Fluorine is the most electronegative element on the periodic table and the electronegativity decreases as we move right to left in the periodic table as well as top to bottom in the periodic table). [3]
Here in the SF2 molecule, if we compare the sulfur atom (S) and fluorine atom (F), then the sulfur is less electronegative than fluorine.
So, sulfur should be placed in the center and the remaining 2 fluorine atoms will surround it.
Step #3: Put two electrons between the atoms to represent a chemical bond
Now in the above sketch of SF2 molecule, put the two electrons (i.e electron pair) between each sulfur atom and fluorine atom to represent a chemical bond between them.
These pairs of electrons present between the Sulfur (S) and Fluorine (F) atoms form a chemical bond, which bonds the sulfur and fluorine atoms with each other in a SF2 molecule.
Step #4: Complete the octet (or duplet) on outside atoms. If the valence electrons are left, then put the valence electrons pair on the central atom
Don’t worry, I’ll explain!
In the Lewis structure of SF2, the outer atoms are fluorine atoms.
So now, you have to complete the octet on these fluorine atoms (because fluorine requires 8 electrons to have a complete outer shell).
Now, you can see in the above image that all the fluorine atoms form an octet.
Also, only 16 valence electrons of SF2 molecule are used in the above structure.
But there are total 20 valence electrons in SF2 molecule (as calculated in step #1).
So the number of electrons left to be kept on the central atom = 20 – 16 = 4.
So let’s keep these four electrons (i.e 2 electron pairs) on the central atom.
Now, let’s move to the next step.
Step #5: Check whether the central atom has octet or not. If it does not have an octet, then move the electron pair from the outer atom to form a double bond or triple bond
In this step, we have to check whether the central atom (i.e sulfur) has an octet or not.
In simple words, we have to check whether the central Sulfur (S) atom is having 8 electrons or not.
As you can see from the above image, the central atom (i.e sulfur), has 8 electrons. So it fulfills the octet rule and the sulfur atom is stable.
Step #6: Final step – Check the stability of lewis structure by calculating the formal charge on each atom
Now, you have come to the final step and here you have to check the formal charge on sulfur atom (S) as well as each fluorine atom (F).
For that, you need to remember the formula of formal charge;
Formal charge = Valence electrons – Nonbonding electrons – (Bonding electrons)/2
- For Sulfur:
Valence electron = 6 (as it is in group 16)
Nonbonding electrons = 4
Bonding electrons = 4 - For Fluorine:
Valence electron = 7 (as it is in group 17)
Nonbonding electrons = 6
Bonding electrons = 2
Formal charge | = | Valence electrons | – | Nonbonding electrons | – | (Bonding electrons)/2 | ||
S | = | 6 | – | 4 | – | 4/2 | = | 0 |
F | = | 7 | – | 6 | – | 2/2 | = | 0 |
So you can see above that the formal charges on sulfur as well as fluorine are “zero”.
Hence, there will not be any change in the above structure and the above lewis structure of SF2 is the final stable structure only.
Each electron pair (:) in the lewis dot structure of SF2 represents the single bond ( | ). So the above lewis dot structure of SF2 can also be represented as shown below.
Related lewis structures for your practice:
Lewis structure of IF5
Lewis structure of HNO3
Lewis structure of SCN-
Lewis structure of ClF3
Lewis structure of Cl2
Article by;
Jay Rana
Jay is an educator and has helped more than 100,000 students in their studies by providing simple and easy explanations on different science-related topics. With a desire to make learning accessible for everyone, he founded Knords Learning, an online learning platform that provides students with easily understandable explanations.Read more about our Editorial process.
Author
Jay Rana
Jay is an educator and has helped more than 100,000 students in their studies by providing simple and easy explanations on different science-related topics. With a desire to make learning accessible for everyone, he founded Knords Learning, an online learning platform that provides students with easily understandable explanations.
Read more about our Editorial process.